
Modeling Unicorns and Dead Cats:

Applying Bressan’s MLν to the Necessary

Properties of Non-existent Objects

Abstract

Should objects count as necessarily having certain properties, de-
spite their not having those properties when they do not exist? For
example, should a cat that passes out of existence, and so no longer
is a cat, nonetheless count as necessarily being a cat? In this essay
I examine different ways of adapting Aldo Bressan’s MLν so that
it can accommodate an affirmative answer to these questions. Anil
Gupta, in The Logic of Common Nouns, creates a number of lan-
guages that have a kinship with Bressan’s MLν , three of which are
also tailored to affirmatively answering these questions. After com-
paring their languages, I argue that metaphysicians and philosophers
of language should prefer MLν to Gupta’s languages in most appli-
cations because it can accommodate essential properties, like being
a cat, while being more uniform and less cumbersome.

1 Introduction

Aldo Bressan, working in contact with Carnap, but unaware of parallel de-

velopments in modal logic due to Kripke, presented a uniform, higher-order,

quantified modal language, MLν , in (Bressan, 1972). Of the major systems

treated today, it is most like Montague’s IL. Later Anil Gupta, working under

Nuel Belnap and Rich Thomason, developed a series of languages in the spirit

of MLν that distinguished common nouns from predicates, both syntactically
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and semantically (Gupta, 1980).1

Both Bressan and Gupta develop their languages to accommodate the pos-

sibility of some objects not existing in a case. In doing so, Gupta addresses

an issue for how to develop the semantics of necessity that Bressan overlooks.2

Should an object that falls under a predicate in every case in which it exists,

but does not fall under it in some case where it does not, count as necessarily

falling under that predicate? For example, take the cat Madrone. Madrone has

passed away. Arguably, Madrone no longer exists, and non-existent or merely

possible cats are not cats. Should Madrone, who was a cat in those cases in

which he existed, count as necessarily a cat? Similarly, take Pokey the unicorn.

In the present world Pokey doesn’t exist but in all of the worlds where Pokey

does exist, she is a unicorn. Is Pokey necessarily a unicorn, despite the empty

extension of ‘unicorn’ in this world?

In different contexts we may want languages that answer these questions

differently, so I will be developing the semantics of MLν to accommodate both

an affirmative and negative answer.3 Specifically, in section 7, I look at two

options for developing MLν so that objects which pass out of existence or are

merely possible in some cases can count as necessarily falling under a predicate,

as they can in Gupta’s L3. Attempting to think through how to adjust MLν

so that it preserves the same intuitions as L3 will clarify Gupta’s motivations

for how he set up his languages. In section 8, I will urge that preserving those

intuitions isn’t worth the cost in usability and uniformity, since MLν can pre-

1For an introduction to MLν that is more accessible than Bressan’s book, see (Belnap,
2006). Since submitting this essay for review, Belnap and Müller have published two essays
self-consciously developing the first order fragment of MLν (Belnap and Müller, 2014b) &
(Belnap and Müller, 2014a). In the first of these they do an especially nice job of explaining
the virtues of MLν , and their own Case-Intensional First Order Logic (CIFOL), in comparison
to other quantified modal logics. I refer the reader to this essay for a more comprehensive
discussion of the related languages than I will provide.

2Bressan first suggests how his account can be modified to deal with objects that may
not exist in all cases in (Bressan, 1972, p. 89). He amends this suggestion in (Bressan, 1993,
p. 372). In both of these discussions he passes over our problem for the semantics of necessity
in silence. Gupta, however, struggles mightily with the issue in developing his L3. It is worth
noting that Belnap and Müller end up treating the semantics of necessity in CIFOL in a very
similar manner to the way that I suggest we should treat it in MLν (Belnap and Müller,
2014b, esp. 419).

3Following Bressan, I will be using the term ‘case’ in order to stay neutral between in-
terpreting modal indices either as worlds or times. And although, of course, there are quite
important differences that arise when interpreting modal indices in different ways, as much as
possible I will be attempting to work at a level of abstraction that is above these.
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serve a notion of essential properties, which will be properties a thing has in

every case that it exists, without modifying the semantics for necessity. In prior

sections, I will informally introduce the languages, give some of the semantics

for MLν , discuss a somewhat analogous issue that arises with quantification

over non-existent objects, and then introduce the notions of an absolute and

quasi-absolute concept.

2 A preliminary comparison of languages

Before I begin my formal introduction of MLν , in this section I will informally

introduce what is distinctive about Bressan’s and Gupta’s languages. Here we

will see why our problem for the semantics of necessity does not tend to be

thought of as an interesting problem for standard modal logics. We will also

get a better sense of the contrasting motivations behind Bressan’s and Gupta’s

languages, as well as a preliminary sense of their respective virtues.

A main advantage of intensional modal logics over other modal logics is that

they can grant explicit logical criteria for when a predicate will provide suitable

principles of trans-case identity. Predicates that satisfy these criteria will allow

one to trace the objects under them across times or worlds.4 Standardly, this

kind of work is done through the structure of the model—the worlds and their

domains. For example, a ship d in a world w, is the same ship as a ship d′ in a

world w′, if and only if d = d′. In this way, principles of trans-case identity are

standardly taken to be vacuous, because we have the same object in different

cases. In Bressan’s and Gupta’s languages, however, these principles will not

be vacuous: a could be Madrone w, while b is him in w′. Those predicates like

‘is a cat’ that allow one to trace the same individual from case to case will have

distinctive logical properties. In MLν these predicates will primarily be what

Bressan calls ‘absolute concepts,’ while in Gupta’s languages they will primarily

be ‘substance sorts,’ and both are notions I will return to below.5

4Gupta presents an argument for the distinct logical treatment of common nouns that
bring with them such criteria of identity in (Gupta, 1980, esp. ch. 1, §5). Bressan offers some
assessment of this argument in (Bressan, 1993, §N6). And McCawley has a nice brief discussion
in McCawley (1982).

5Although it will be predicates that provide principles of trans-case identity in these lan-
guages, we need not take this to be an implicit endorsement of ‘contingent’ or ‘relative identity.’
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Montague’s IL, despite being just as mathematically powerful as MLν or

Gupta’s languages, lets the model and rigid designation do the job of providing

principles of trans-case identity. This is why I will not be discussing it at length.

Languages that build principles of trans-case identity into the model structure

can deal with the puzzle I introduced for the semantics of necessity by excluding

individuals that do not exist in a case from that case’s domain.6 But because

much of the appeal of MLν and Gupta’s languages stems from their power to

avoid doing this metaphysical work by relying on the model structure, for both

it is useful to have a treatment of necessity and non-existence that does not rely

on variable domains.

Gupta claims two main philosophical advantages for his languages over MLν .

The first is that while in MLν the main class of objects are Carnapian individual

concepts—functions that take one from a world to an extension—Gupta’s main

class of objects are extensional individuals. Since Quine the (perhaps now fad-

ing) received dogma has been that in the first instance we should model objects

through extensions at a world or case, because these correspond best to this

or that physical object. Bressan’s own motivations for constructing MLν stem

from physics, and the attempt to model dispositions and powers that may not

be actualized.7 However, if we reject Quine’s claim that such modal features of

objects are not susceptible to logical treatment,8 the motivation for not taking

our primary class of objects to be functions from cases to extensions becomes

less clear.

Gupta’s second main philosophical motivation in setting up his languages is

capturing both semantically and syntactically the differences between common

nouns, intensional predicates, and extensional predicates (Gupta, 1980, p. 1-

3). All three of these are standardly rendered as predicates with principles of

application that determine their extension at each world (and time). Within

Rather, we just need to think common nouns like ‘cat,’ ‘horse,’ or ‘person,’ have distinctive
semantic properties that distinguish them from predicates like ‘red,’ or ‘smooth’ that do not,
and that this difference is worth modeling in our language.

6cf. e.g. (Cresswell and Hughes, 2004, ch. 15 & 16)
7Specifically, as a practicing physicist, Bressan wanted to capture Mach’s definition of

“mass” in terms of possible experiments.
8(Quine, 1980). Another major motivation for this extensionalism seems to have come

from reading intension as on the side of the mental. Although there was plenty of historical
warrant for this, it is clear that Bressan’s intensions are patterns of extensions-at-a-case, as
the case varies. There is nothing mental about them.
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these, however, common nouns are special in that they also have principles of

identity, which allow us to trace individuals from case to case. While extensional

predication (like ‘John finds a unicorn’) and intensional predication (like ‘John

seeks a unicorn’) differ in that the former predicates are true of mere extensions,

while the latter are true of individual concepts.

Both Bressan’s MLν and Gupta’s languages mark these differences seman-

tically. Gupta goes farther, however, and distinguishes them syntactically as

well.9 This is closely related to Gupta’s extensionalism. Because the objects of

Gupta’s languages are extensional individuals, when assessing extensional pred-

icates at a world we just look at the objects they are true of at that world. The

syntax for assessing intensional predicates, however, relies on variables that are

assigned to a pair consisting of a ‘sort’ and an object in a world’s extensional

domain, which together fix how to track this object to other worlds, and allow

the consideration of these counterparts when assessing intensional predicates.

Common nouns, on the other hand, indicate the ‘sort’ of thing an extensional

individual is, and so are not just assessed intensionally, but determine the coun-

terparts of the thing in question.10

In order to capture syntactic differences between these three grammatical

roles, Gupta sacrifices the uniformity and simplicity found in MLν , making his

languages significantly more cumbersome. Considering that in MLν there are

still significant semantic differences between each of these roles, however, we

may wonder with Bressan whether Gupta’s comparatively unwieldy adaptation

is worth it (Bressan, 1993, p. 371). Without developing a response to our issue

for the semantics of necessity when objects may not exist in some cases, however,

MLν remains significantly underdeveloped as compared to Gupta’s languages,

and so it is to this that we now turn.

9Bressan puts the point that common nouns, extensional predicates and intensional pred-
icates will be treated in a syntactically uniform way in MLν rather strongly by claiming that
“no a priori distinction is made in MLν between common nouns and 1-ary predicates” (Bres-
san, 1993, p. 351). Bressan treats all predication as intensional and there are not different
semantic rules for assessing extensional and intensional predicates. Nonetheless, extensional
predicates are distinctive, since their truth in a case only depends on the extension in that
case of the individual concepts falling under it, not the extensions of these concepts in other
cases. This allows Bressan to preserve a uniform treatment of predication while still capturing
significant semantic differences for extensional predication. (The relevant technical details for
understanding how this works will be presented in the next section.)

10I give a formal statement of these differences in the Appendix on Gupta’s languages.
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3 Basic semantic elements

I will briefly lay out the basic elements of the semantics of MLν before turning to

the question of how the introduction of non-existent objects affects the semantics

of quantification, necessity and predication.11 A Bressan Model M = 〈S, I〉
combines a Bressan structure S = 〈ν,D,Γ, ∗〉 with an interpretation-function

I; where ν is the number of basic types and Typeν is the set of types of MLν ;

D is the domains-function defined on Typeν such that Dτ is the domain of

extensional individuals of type τ ; Γ is the set of all cases γ; and ∗ is a function

defined on Typeν such that ∗τ ∈ Dτ for every domain Dτ . We will think of ∗τ
(or just ∗ when I am, as will be usual, suppressing types) as the non-existent

entity of type τ .12

An interpretation-function I is a function that maps all of the atomic expres-

sions (A ∈ Atom) of the language to objects of the appropriate type.13 Except

at the bottom (τn where n ∈ {0} ∪ ν̄, 0 is the type of truth values, and ν̄ is the

set of basic types) these objects are intensional. Accordingly, the mapping is

usually from the atomic expressions of each type to intensional objects of that

type.

11In doing this I will not use the form of MLν presented in (Bressan, 1972), but the one
Belnap sketches in (Belnap, 2006). For a more detailed explanation of the type hierarchy and
the basic elements of the semantics than I give here, see (Belnap, 2006).

12Bressan, Gupta, and Belnap, all designate non-existence by having a single non-existent
entity of each type. A few other ways of representing non-existence seem available to us. First,
we could leave individual concepts undefined in the cases in which they don’t exist. Second,
we could have lots of non-existent entities—most intuitively one for every possible object.
Using the second of these would have the advantage of trivializing the problems that arise for
Bressan with the introduction of non-existence. Since that would make for an uninteresting
essay, and mean accepting a vast menagerie of non-existing things into our ontology, I will
leave it aside. The first option however, will come up again below. (Gupta considers these
two options briefly (Gupta, 1980, p. 68).)

Montague treated terms like John as denoting not an individual, John, but a set of John’s
properties, where properties are intensional, mapping indices to sets of extensions. This Rus-
salian treatment made a corresponding treatment of non-existent objects natural. Accordingly,
when translating a sentence like ‘John seeks a unicorn’ into IL, ‘a unicorn’ will be treated as a
property of properties. (For a nice explanation see (Dowty et al., 1981, ch. 7, §V).) This kind
of approach means that one can avoid countenancing non-existent objects in one’s ontology,
give a decent rendering of the sentence, and get close to the specificity that one could have by
allowing a different non-existent entity for every merely possible object. This kind of strategy
is very different than the ones we will be pursuing, in part because we will treat singular terms
as designating individuals in a Fregean manner.

13This means that what A ranges over will shift according to application—variables and con-
stants will be atomic expressions of one type, whereas truth values will be another, predicates
taking constants as arguments another, etc.
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Definition 1 (Intensional Domain). Call this set of objects the intensional

domain of type τ , and symbolize it as: Intτ =df (Γ 7→ Dτ ) (or just Int =df

(Γ 7→ D) when types are suppressed). For every A ∈ Atom, I(A) ∈ Intτ(A).

A shifted interpretation [d/x]I, given an interpretation I, an atom x of type τ ,

and an entity d ∈ Intτ(x) is defined by ([d/x]I)(x) = d and ([d/x]I)(y) = I(y)

for τ(y) = τ(x) but x 6= y. This notion of a shifted interpretation will be the

foundation for the semantics of quantification.14

The way that we will approach the semantics of the operators is via the

function that gives the extension of an expression in a particular case on a given

interpretation.

Definition 2 (Quasi-Extension). Let the quasi-extension of A in case γ on

interpretation I be given by the following: 15

QEγ,I(A) = (I(A))(γ).

Since I assigns a member of Int to A, an interpretation I of such an A will be

a function, I(A), that takes cases as arguments and outputs extensions.

The semantics of the truth functions and identity are both extensional. Fol-

lowing (Belnap, 2006, p. 36), let Neg be the negation function on D0=2={T,F}
and set QEγ,I(¬A) =df Neg(QEγ,I(A)). In a similar way, the truth values of

the other four non-modal connectives, ∧,∨,→,↔ will depend only on the QE

at γ, I of A and B. Identity is also extensional. QEγ,I(A1 = A2) = T ↔df

QEγ,I(A1) = QEγ,I(A2). Thus, two individual concepts that have the same

extension in a case will come out identical, although not necessarily so.16

14Having these definitions down, for the most part, in the rest of the essay I will suppress
types because they are largely irrelevant to the issues under consideration.

15Belnap defines this notion as a counterpart to Bressan’s quasi-intension function.
“QII(A)” signifies “the quasi-intension on interpretation I of A”. This gives a function from
the set of cases Γ to expressions of the appropriate type τ , that is, a member of Intτ .

16This makes formal issues over contingent vs. strict identity quite clear. For a nice defense
of why treating equality this way is preferable in MLν see (Belnap, 2006, p. 36-37).
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4 Adjustment of quantification

The semantics of quantification, modality, and predication, will all potentially

need adjustments. Beginning with quantification will get us warmed up by

raising some issues with interpretation shifts and domains that will come up

again in more complex ways with modality. How exactly to treat predication

will depend on how we treat modality, and modality will be difficult.

Dealing with quantification requires a bit of subtlety because we need to

decide whether the quantifiers should range over only existing objects or also

non-existing ones. Uniformity seems to demand that the quantifiers range over

both and giving quantifiers a wider scope will likely be useful in a number of

contexts, especially counterfactual and modal ones. It is also likely, however,

that there will be many contexts, as when speaking of all of the men in the

room, in which it will be useful to restrict quantification to existing objects.

Thus, we will want to develop both accounts, although for uniformity’s sake

let’s take quantification that ranges over possible objects as well as actual ones

to be primary. Thus, the addition of non-existent objects doesn’t affect the

semantics for our primary notion of quantification, so that the semantics for it

will be relatively straightforward. Let us use the following clauses:

QEγ,I(∀x A) =df T iff QEγ,[d/x]I(A) = T for every d ∈ Int

QEγ,I(∃x A) =df T iff QEγ,[d/x]I(A) = T for some d ∈ Int

There will, however, likely also be contexts in which we want to only quan-

tify over the things which exist in a given case. Aside from (1) making all of the

individuals that don’t exist in γ irrelevant for evaluating the formula by adjust-

ing the above definitions of the quantifiers, we could also backhandedly restrict

the range of the quantifiers in two ways. (2) We could restrict our domain, Int,

such that all the individual concepts in the intensional domain in a particular

case exist in that case; or (3) we could modify how interpretation shifts work

and only shift to objects that exist in the relevant case, while still including

merely possible objects in our intensional domain. Accordingly, there are three

obvious ways to pull off the more restrictive quantifications.
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Although option (1) is obviously the most straightforward, a move similar to

that of option (2) will seem enticing when dealing with modality, and arguably

Gupta should implement a strategy like (3). Working backwards, option (3) has

the obvious disadvantage of introducing a second notion of shifting—having one

for unrestricted quantification and another for restricted quantification. Still,

the third option is arguably the most natural within Gupta’s languages because

quantification is always relative to a common noun and is over extensions, not in-

dividual concepts. For, because quantification is restricted to a kind, it depends

on an assignment function that is already a bit baroque, and because quantifica-

tion is over extensions, the modifications required are relatively straightforward.

In MLν , however, how one should modify the notion of a shifted interpretation

is not obvious. Thus, compared to (3), in MLν it seems better to bring about

the restriction in the more straightforward way of option (1).

Option (2), where we only include existing individual concepts in the domain

of a case, is a bit more tempting. This proposal contrasts with Bressan’s original

formulation because on his formulation the intensional domain is constant across

cases. This is not, as one might first think, a dodgy metaphysical assumption

on Bressan’s part. Rather, having differing domains in the various cases of MLν

would breed confusion, since it suggests that some kind of relationship between

the domains can be gleaned from their differences. As discussed above, however,

this is not how these kinds of relationships are fixed in MLν , and differences of

domain end up being pointless, since the logic of tracing objects from case to

case is independent of the names objects receive in each case.17

On the other hand, option (1), which leaves the domain function and the

notion of shifting untouched, simply and transparently discounts non-existent

individuals when evaluating quantified formulas. Using ∀e to designate the non-

standard, more restrictive quantification over only existing individuals, let us

use the following clauses (remember, identity is extensional):

QEγ,I(∀exA) =df T iff (QEγ,[d/x]I(A) = T or d = ∗) for all d ∈ Int
17Furthermore, parallel to the doubling of option (3), in order to preserve unrestricted

quantification as well on option (2) one would need two distinct domains, one which includes
merely possible objects, and one that doesn’t. Such a complication seems worth avoiding, if
possible.
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QEγ,I(∃exA) =df T iff (QEγ,[d/x]I(A) = T and d 6= ∗) for some d ∈ Int

Since this last account both preserves the uniformity of MLν and places the

restriction in the quantification clause where it belongs, it is the best option.

5 Absolute and quasi-absolute concepts

In order to broach the problem that arises for the semantics of necessity, we

will first need to understand Bressan’s conception of absoluteness and quasi-

absoluteness. Absolute concepts, remember, are how Bressan semantically cap-

tures what is distinctive of substances and their associated common nouns, over

and above intensional predicates like “x is fragile.” The latter, although they

have criteria of application, will not pick out the same individual in every case,

while common nouns supply criteria for how to identify, count, and individuate

objects, which allow those individuals to be traced from case to case.

First, let’s assume that the relevant objects exist in all cases. The primary

notion of an absolute concept, as well as the two relevant auxiliary notions,

modal constancy and modal separation, are defined as follows:

Definition 3 (Absolute Concept). An intensional predicate F will be absolute

if it is both modally separated and modally constant.

Abs =df MConst ∩MSep

Definition 4 (Modal Constancy). The intensional predicate F is modally con-

stant if every individual concept that falls under F in some case does so in every

case:

F ∈MConst =df ∀x (♦Fx→ �Fx)

Definition 5 (Modal Separation). An intensional predicate F is modally sep-

arated in a case if no two individual concepts falling under it share the same

extension in any case:

F ∈MSep =df ∀x ∀y [(Fx&Fy)→ (♦(x = y)→ �(x = y))]
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The idea behind constancy is roughly that if something falls under a constant

predicate in one case, then it falls under it in all cases. The thought behind

separation is that if the extensions of two individual concepts falling under a

separated predicate in a case overlap at any case, then the concepts are identical.

Modal separation and modal constancy are independent properties—having

one neither precludes nor guarantees having the other. Although modal separa-

tion is case relative, modal constancy and absoluteness are not. This is because

constancy requires that every individual concept falling under the predicate in

some case, fall under it in all cases. So if a predicate isn’t modally separated in

one case but is modally constant, then it won’t be separated in any cases and

thus won’t be absolute.18

In order to adapt absoluteness to non-permanent substances, Bressan adjusts

it along with modal constancy and separation in the following ways.

Definition 6 (Quasi-Absolute Concept). His adapted notion of absoluteness,

quasi-absoluteness is:

QAbs =df QMC ∩QMS

where QMC and QMS are short for his adjusted quasi-modal constancy and

quasi-modal separation respectively.

Modal constancy demands that an individual concept falling under the predicate

fall under it in every case. Once we admit the non-existence of substances in

some cases, it seems we don’t want to have to say that the individual concept

has to fall under the concept even in those cases where it doesn’t exist. For

18Gupta tinkers with Bressan’s notions. Although every common noun does provide a
principle of identity for tracing the objects it is true of across cases, not every common noun
designates a kind of substance. For example, ‘man born in Jerusalem’ does not, since being
born in Jerusalem is not an essential property of the man. Unlike Bressan, who is only
concerned with modeling substance kinds through his absolute concepts, Gupta marks this
difference. He does this by distinguishing between sorts and substance sorts, which are the
intensions assigned to the two kinds of common nouns. Roughly, sorts provide principles
of identity that allow one to trace an object from case to case because they are separated
intensional predicates, while substance sorts also indicate essential properties, and so are
constant. Gupta maintains that for every sort, there is a substance sort that underlies it,
which accounts for why it is separated (for discussion, see (McCawley, 1982)). Although
Gupta’s substance sorts correspond to Bressan’s absolute concepts, and Gupta does not need
to substantively alter Bressan’s modal constancy, because Bressan’s modal separation is case
relative it will not do for modeling a principle of trans-case identity. For some of the technical
details on how Gupta modifies modal separation so that it can effectively model the principles
of identity of common nouns see the appendix.
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example, take the sort ‘cat.’ This seems like a paradigmatic substance sort. Yet

the extension of an individual concept designating an imaginary, yet to be born,

or dead cat should arguably be the non-existent object. And it is at least not

obvious that we should insist the non-existent cat fall under the sort even in

these cases.19 We will return to this issue, but for now, to allow the possibility of

accommodating this thought, let us adjust modal constancy so that we discount

cases in which the thing doesn’t exist.

Definition 7 (Quasi-Modal Constancy). All cases in which an object doesn’t

exist are irrelevant to evaluating the quasi-modal constancy of the predicate

under which the object falls:

F ∈ QMC =df ∀x [♦Fx→ �(Fx ∨ x = ∗)]

Modal separation also needs to be modified. Since we are using a single

entity to designate non-existence, when two objects (individual concepts) don’t

exist in a case their extensions will be the same. But if the extensions of two

F ’s overlap in any case, including a case at which they are not currently being

evaluated, then F is not modally separated. Thus the predicate ‘x is a cat’ will

not be modally separated if there are two cats which, though distinct in every

case in which they exist, happen to both not exist in some case. Accordingly,

we should discount these.

Definition 8 (Quasi-Modal Separation). Thus, a predicate will be quasi-modally

separated if it is modally separated in all cases except those in which the indi-

19Gupta goes so far as to suggest an added condition on sorts that they never apply to
non-existent objects (Gupta, 1980, p. 69n).
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viduals falling under it happen to not exist in the same case: 20

F ∈ QMS =df ∀x ∀y [(Fx ∧ Fy ∧ ♦[x = y 6= ∗])→ �(x = y)]

Parallel to above, neither quasi-modal separation nor quasi-modal constancy

preclude or guarantee the other. But unlike above, quasi-absoluteness and quasi-

modal separation are case relative notions, while only quasi-modal constancy is

not. Quasi-absoluteness is case relative because quasi-modal constancy is not

enough to guarantee quasi-modal separation in every case. That is, although a

predicate may be quasi-modally constant and quasi-modally separated in some

case, that does not mean that it is quasi-modally separated in every case.21

The upshot of the case relativeness of quasi-absoluteness is that it is inadequate

for representing non-permanent substances like living beings. Gupta gives the

following illustrative example. Now assuming there are only two cases, w1, w2

and only two objects in the structure, b and the non-existing object *, define

the intentional property S as follows:

S :

w1 w2

bb bb

∗b

F igure 1

20In defining Quasi-Modal Separation at (Bressan, 1993, p. 372), Bressan accidentally omits
the diamond. (The lozenge is not forgotten in (Bressan, 1972, p. 94).) The ramifications of
this omission illuminate the relative importance of QMC and QMS. Leaving it out weakens
the requirement because without the diamond a predicate can still be quasi-modally separated
in a case even if two individual concepts falling under it overlap, as long as they don’t overlap
in the case under consideration. Keeping the diamond means the individual concepts can’t
overlap in any case if the concept they are falling under is separated in that case. Since
quasi-absolute concepts are also quasi-modally constant, whether the diamond is included or
not makes no difference to them. Still, including the diamond is preferable because quasi-
modal separation is intended to let us trace the same object from case to case, and if two
objects overlap in some case, then from that case it is impossible to know which object to
trace back through the other cases. These considerations help show that separation is more
important than constancy for tracing objects. In Chapter 4 of his book Gupta elaborates an
elegant solution to Chisholm’s trans-world identity problem for inanimate objects (like bikes or
Theseus’s ship) that admits such objects aren’t even quasi-modally constant but which shows
that as long as the corresponding sortal predicate (e.g. ‘x is a bike’) is quasi-separated in every
world, this is enough to trace them across worlds (Gupta, 1980, p. 86-107, esp. p. 104-106).

21This is the gist of the footnote on p. 70 of (Gupta, 1980).
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Here the strings of characters in each row stand for individual concepts, whose

left character indicates its extension in w1 and whose right character indicates

its extension in w2. The columns indicate different worlds or cases. And the

individual concepts listed in each column will be the individual concepts that the

intensional property S is true of for the case in question. Like other predicates

in MLν , S will take individual concepts as arguments and yield truth values.

What this picture represents is that the individual concept bb is S in both

cases but ∗b is only S in w2. Here S ∈ QMS in w1 but not in w2, while

S ∈ QMC in both cases, since quasi-modal constancy is not case relative. Thus,

S ∈ QAbs in w1 but not w2. Responding to this point of Gupta’s, Bressan

modifies his account of what is needed for representing essential properties like

being a certain kind of living being, claiming �QAbs is what is needed, rather

than just QAbs (Bressan, 1993, p. 371-372). This is an adequate response to the

objection because �QAbs guarantees quasi-modal separation and quasi-modal

constancy in every case.22

6 The dilemma for necessity

In order to give support to the claim of adequacy for �QAbs Bressan goes on

to prove the equivalence of it to QMC ∧ �(♦F ∈ QMS), his paraphrase in

MLν of Gupta’s notion of a substance sort from L2−L4 (Bressan, 1993, p. 372).

Namely, for a property F :

F ∈ �QAbs ≡ F ∈ QMC ∧�(♦F ∈ QMS)

This is slightly misleading, however, because Gupta’s L2 − L4 face the prob-

lem discussed in the introduction that arises for the semantics of necessity once

non-permanent substances are introduced—whether, e.g., cats which aren’t cats

in cases where they don’t exist should count as necessarily cats or not—while

(Bressan, 1993) gives no hint that there is a parallel problem for MLν .23 Ac-

cordingly, although Bressan adequately paraphrases Gupta’s substance sort, he

22Again, I give some of the details of Gupta’s account of these notions in the appendix.
23For Gupta’s discussion of the problem see chapter 3, §2 (Gupta, 1980, p. 71-78).
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doesn’t acknowledge that more work needs to be done to give an account of

non-permanent substances in MLν on a semantic par with Gupta’s. In the re-

mainder of the essay I will present the problem as it arises for MLν and propose

what I think is the best solution.

The problem can be seen clearly in the definition of the quasi-extension

function for necessity in (Belnap, 2006). Belnap defines the semantics of the

quasi-extension of modal statements in the standard way. For necessity in par-

ticular:

QEγ,I(�A) =df T iff QEγ,I(A) = T for all γ ∈ Γ

This just says that A will be necessary in case γ if it is true in every case. In

this essay Belnap eschews dealing with non-existence. If he hadn’t, he would

have faced our dilemma. Is an animal that is a cat in every case in which it

exists, necessarily a cat? If we treat ‘x is a cat’ as a quasi-absolute concept and

don’t modify the above definition of necessity, the answer would be no. Let me

illustrate with a picture.

Cx:

γ1 γ2 γ3

abc abc abc

eh∗ eh∗

f∗∗

Figure 2

Here again the strings of characters stand for individual concepts whose exten-

sion in each case is indicated by the character in the corresponding position

in the string, while the columns indicate different cases, and the individual

concepts in each column will be the individual concepts the predicate is true

of in that case. Cx is quasi-absolute, but because QEγ3,IC(eh∗) = F and

QEγ3,IC(f∗∗) = F , eh∗ and f∗∗ are not necessarily cats.24 In order for eh∗ and

f∗∗ to come out as necessarily cats while holding on to the above definition of

necessity, they would have to fall under the predicate ‘x is a cat’ even in cases

24There is a pardonable abuse of notation here that I will continue in what follows.
QEγ3,IC(eh∗) = F abbreviates: QEγ3,IC(x) = F where I(x) = eh∗, and similarly for
QEγ3,IC(f∗∗) = F .
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where they don’t exist:

C ′x:

γ1 γ2 γ3

abc abc abc

eh∗ eh∗ eh∗

f∗∗ f∗∗ f∗∗

Figure 3

The dilemma then is this: Should a thing count as having a property necessarily

if it only has it in every case in which it exists or should it only count as having

the property necessarily if it has it in every case, regardless of whether or not

it exists?

7 The former route: Gupta’s advantage

In MLν the less permissive option, which requires an individual concept have

a property even in the cases where it doesn’t exist for it to have that property

necessarily, works better. According to Gupta, the major drawback of this route

is that it doesn’t really accord with the everyday usage of common nouns. We

tend to think dead cats are still necessarily cats, but don’t think that merely

possible cats are cats. As a result, Gupta maintains we should both think of

cats as necessarily of their kind, but not hold that ‘is a cat’ is true of them when

they do not, no longer, or have yet to, exist.25 Going the less permissive route

means giving up one or the other of these. If this is unacceptable in a given

application, then Gupta’s languages (especially L3) are preferable, since they

25How much we agree with Gupta here will depend on what we are using our logic for and
how we are interpreting our cases. At first at least, it will seem we won’t want to count merely
possible cats as cats, if we interpret cases as worlds, since we don’t want to have to consider
all of the merely possible men in the room when we talk about men. On the other hand, if
cases are interpreted as times or moments in possible histories, and we want to model, “Mama
could have had two more kittens than she in fact had” it seems odd to insist that what we
are referring to are not cats.

This rule of thumb will certainly not be hard and fast, and I do not take deciding between
these options to be a matter for logic. Still, perhaps it is worth mentioning my own view is
that merely possible cats, men, or unicorns, should usually count as of their kind, in line with
Figure 3 and against Gupta. Possible, dead, or imaginary men seem to be no less men than do
living ones and their non-existence is marked by their having the non-existent object as their
extension. (Kant’s remark about the hundred Thalers comes to mind (CpR, A599/B627).)
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preserve both.26 We can now see a further reason Gupta has for giving up the

uniformity of MLν that I spoke of above. He wants to hold on to both of these

thoughts, but as long as predication is primarily intensional, which is what is

largely responsible for the uniformity of MLν , it is not obvious how to build a

semantics for necessity more permissive than the one I gave on p. 15.

We can see this difficulty more clearly if we look at how to go about setting

up the semantics of necessity in MLν in accord with the first, more permis-

sive option that Gupta favors. This section will be devoted to doing this by

formalizing the following:

Definition 9 (Rough Definition). QEγ,I(�A) = T iff QEγ,I(A) = T in every

case γ in which the truth value of A does not depend on an individual that

doesn’t exist in γ.27

The trick is finding a definition that captures the second clause uniformly for

each kind of formula A. The options are in a way similar to the ones we faced

with quantification because again we are trying to discount individuals that

don’t exist in the case in which we are evaluating the formula. The major

difference here, however, is that there is no easy way to simply and uniformly

discount non-existent individuals in the definition itself because what is in ques-

tion here is not individual concepts but formulas, and there is no straightforward

way to identify a formula, A, that involves a non-existent object.

The first option we could try, crudely analogous to quantification option (1)

in section 4, is to mark the truth values of formulas that are only invalidated

by non-existent objects and adjust the semantics for necessity accordingly. We

will see that this option has serious drawbacks. The second, similar to quan-

tification option (2) above, would involve restricting the domains so that only

individual concepts that exist belong to the domain of a particular case. As

with quantification, however, this would not be in the spirit of MLν because

it relies on distinctions in the structure of the model for securing principles of

trans-case identity. With necessity in MLν option (3), however, is even less

26L4, however, is an exception. It gives up on the thought that possibly non-existent cats
are necessarily cats and is much closer to MLν than Gupta’s other languages because its
variables range over individual concepts rather than extensions.

27This is closely related to Gupta’s “initial intuition” (Gupta, 1980, p. 71).

17



natural than it was with quantification, since there is no notion of shifting that

could be restricted. Gupta, however, attempts a modification of the assignment

function with some success and I will look briefly at the advantages of this over

implementing option (2) in MLν .

7.1 Option 1: the ‘new-truth-value’ way

Let us start thinking about how the first option would work by considering

the atomic case. Continuing to use the above example, QEγ3,IC(ef∗) = F

as in Figure 2, but we don’t want this to falsify QEγ1,I�C(ef∗) = T . Since

predication is of individual concepts, either an individual concept falls under a

predicate in a case or it does not. If it does not, then the predication is false. But

on the guiding thought of our Rough Definition, instances where the individual

concept does not exist are special for the semantics of necessity. Failure here

doesn’t falsify the necessity. Accordingly, a straightforward way to proceed is

to mark the truth value resulting from these cases (with say T*), and make

them irrelevant for evaluating the necessity of a formula. For monadic atomic

sentences28 let’s mark such cases as follows:29

QEγ,Iφ(i) = T ∗ iff QEγ,Iφ(i) 6= T and i(γ) = ∗

We can extend this to quantified formulas as well. The case where quantifi-

cation is restricted to existing objects is fairly straightforward and will either

come out true or false. The less restrictive, standard quantification requires,

however, some subtlety. Since we have the more restrictive form of quantifi-

cation, it makes sense to set the value of the quantified formula equal to T*

in those cases where the formula is only falsified by merely possible objects.

28Perhaps the semantics can, somewhat controversially, be extended to two (or more) place
relations by the following maneuver:

QEγ,Iψ(i, j) = T ∗ iff QEγ,Iψ(i, j) 6= T and either i(γ) = ∗ or j(γ) = ∗

Here, on a temporal reading, “I am the great grandchild of my great grandfather” would be
T* (just as with “Socrates is a man”), since my great grandfather has passed away, if we treat
the predicates as ‘is a cat’ in Figure 2. If we treated them as in Figure 3, however, their value
would be T , and we need not treat all predicates one way or the other.

29N.B. if formulas only depend on objects whose extension is non-existent and are false of
those, they will still come out T*. For example, “Socrates is sitting” is T*.
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Accordingly,

QEγ,I(∀x A) = T ∗ iff QEγ,[d/x]I(A) = T for all d ∈ Int where d 6= ∗ and

QEγ,[d/x]I(A) 6= T for some d ∈ Int where d = ∗

Now from these considerations it might seem we only have to adjust our defini-

tion of necessity slightly: QEγ,I(�A) = T iff QEγ,I(A) 6= F for every γ ∈ Γ.

This is not, however, right. For the most part, the semantics for the truth

functional connectives are straightforward—e.g. T ∨ T ∗ = T ; T ∧ T ∗ = T ∗;

T → T ∗ = T ∗, etc.—but negation is not. If a formula is T* then it is true for

all objects that exist in a case, but not true of some object that doesn’t exist.

If that formula is negated then the negation will be false of all existing objects

and should in most contexts be counted false. Still, it would be true for some

non-existent object,30 which may matter occasionally, in which case it makes

sense to give it the value F*, where F* merely means just true of some non-

existent object. This then suggests the corresponding adjustment for existential

quantification:

QEγ,I(∃x A) = F ∗ iff QEγ,[d/x]I(A) = F for all d ∈ Int where d 6= ∗ and

QEγ,[d/x]I(A) = T for some d ∈ Int where d = ∗

With this new truth value, the slightly more complicated semantics of necessity

should likely go:

QEγ,I(�A) = T iff for every γ ∈ Γ, neither QEγ,I(A) 6= F nor QEγ,I(A) 6= F ∗

I think with these elements on the table, we can see that this strategy will

be unattractive for many reasons. Although parts of the semantics of this don’t

seem so bad (e.g. F ∨ F ∗ = F ∗; T ∧ F ∗ = F ∗; T → F ∗ = F ∗; F ∗ → F = T ∗,

and let’s say T ∗ → F = F ∗, which was problematic before), when the new truth

values interact it gets rather byzantine, especially with the conditional.31 Also,

it is not clear how we should think of these new values; they do not seem to have

30Arguably, an example might be, ‘there is something that is a flying horse,’ where the
intensional object that makes this true is Pegasus.

31The full tables for the two place logical operators are:
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a counterpart in our normal considerations of truth. In some ways they seem

to indicate a truth value gap since, for example, sentences about non-existent

objects like “Socrates is sitting” will count as T*. With quantified sentences,

however, where it is primarily existing objects that are in question, these will

be more like their non-stared counterparts. Still, perhaps this strategy could be

developed to keep cats necessarily cats.

7.2 Option 2 in MLν and option 3 in Gupta’s languages

The second way to implement the Rough Definition—by restricting the inten-

sional domain of each case to individual concepts that exist in it—will also work.

Although it leaves the semantics of necessity straightforward, as discussed in sec-

tion 4, it has the disadvantage of introducing distinctions in domain which are

otherwise unmotivated in MLν .

Gupta’s languages, however, present a rather ingenious way to accommo-

date the thought of the second part of the Rough Definition through a shift

in how the assignments are considered. Again, take the atomic case. Having

put to one side marking cases with a special truth value, it seems if we leave

predication intensional we are stuck saying those predications where the predi-

∧ T T ∗ F ∗ F
T T T ∗ F ∗ F
T ∗ T ∗ T ∗ F ∗ F
F ∗ F ∗ F ∗ F ∗ F
F F F F F

∨ T T ∗ F ∗ F
T T T T T
T ∗ T T ∗ T ∗(T ) T ∗

F ∗ T T ∗(T ) F ∗ F ∗

F T T ∗ F ∗ F

→ T T ∗ F ∗ F
T T T ∗ F ∗ F
T ∗ T T ∗(T ) F ∗ F ∗

F ∗ T T ∗(T ) T ∗(T ) T ∗

F T T T T

↔ T T ∗ F ∗ F
T T T ∗ F ∗ F
T ∗ T ∗ T ∗(T ) F ∗(F ) F ∗

F ∗ F ∗ F ∗(F ) T ∗(T ) T ∗

F F F ∗ T ∗ T

I have listed two truth values for some of the operations because while they will usually have
the first value, if the reasons that the values of the component formulas was T* or F* in
the first place line up, then it seems they should have the second value. For example, if
two formulas involving universal quantification are T*, then for each there will be individual
concepts, d1 . . . dn, whose extensions are non-existent and which falsify them. Taking one of
these formulas as the antecedent and the other as the consequent, if those individual concepts
that falsify the antecedent are a superset of those on which the consequent is false, then it
should be: T ∗ → T ∗ = T . Or if the antecedent is F* and the consequent T*, then the way the
conditional will come out T is if none of the values on which F* is true are also those on which
the consequent is false. So that the operations are truth functional, it makes sense to assign
the value that is not in parentheses, despite the fact that in specific cases the assignment of
the other value can be justified.
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cation comes out false due to non-existent objects are just false. If, however, we

abandon the primacy of intensional predication, making extensional predication

primary again, then there is a way to get around the problem. Going this route,

Gupta introduces an assignment function that assigns extensions and sorts to

variables.32 He defines this so that he preserves the ability to trace objects from

case to case via sorts, while at the same time leaving undefined what the coun-

terpart of that object is in cases where it doesn’t exist. Then, in the semantics

for necessity, he makes irrelevant all cases in which an assignment function for

a variable in the formula comes out undefined (Gupta, 1980, p.71-75).

Despite the loss of uniformity, Gupta’s way around the problem of formaliz-

ing the Rough Definition is preferable to restricting the domain to existing indi-

viduals in MLν , while keeping predication primarily intensional. First, Gupta’s

way doesn’t make it difficult to model talk of merely possible objects in the

language. One way to see this is that there is still a use for the non-existent ob-

ject in Gupta’s languages, while in the restricted domain version of MLν there

wouldn’t be. Using MLν , suppose we had an object ab∗ in γ1 (so a ∈ Dγ1 and

ab∗ ∈ IntDγ1 ). If we restrict the intensional domains of the cases just to existing

objects then ab∗ /∈ IntDγ3 . The first thing we can see is that ∗ will never be the

extension in a particular case of an individual concept in the intensional domain

of that case. Put slightly differently, if we try to trace an individual concept to

a case in which it doesn’t exist we won’t find that concept. Accordingly, on the

domain restriction way it would be more accurate to leave individual concepts

undefined in cases where they don’t exist than to use an object to mark non-

existence. But if an object is always undefined in cases where it doesn’t exist,

and its individual concept isn’t in the intensional domain of such cases, then

there is literally nothing picked out in that case by names of merely possible

objects. So the language can’t effectively model talk of merely possible objects

unless we include a second unrestricted domain.

In Gupta’s languages, on the other hand, there is still a use for the non-

existent object. Individual concepts fall under sorts and variables are assigned

to extensions and sorts. The counterpart of an extensional individual assigned

to a variable is determined by first finding the individual concept under the

32Again, for technical details see the appendix.
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assigned sort whose extension is that individual in the starting case. Then one

looks at the extension of that individual concept in the case to which one is

tracing the assigned object. This extension is the counterpart. Suppose for

example that ‘Cx’ of Figure 2 on page 15 is one of Gupta’s sorts, and that the

assignment function assigns the object ‘e’ and the sort ‘C’ to the variable ‘x’

in γ1. The individual concept this assignment corresponds to is eh∗ and the

counterpart in γ2 of x in γ1 is h. If the counterpart would be the non-existent

object, then the assignment function comes out undefined for that variable in

that case. For example, since we find the non-existent object when trying to

trace x in γ1 to γ3, the assignment function is undefined for x in γ3. Thus,

merely possible objects are still in Gupta’s intensional domains and it makes

perfect sense to talk about them. At the same time, however, Gupta also has

a relatively easy way to discount formulas that depend on non-existent objects

when evaluating a necessary formula in L3. He stipulates in his definition of

necessity that necessary formulas are true if and only if they are true in all cases

in which nothing in them is undefined.33

Another reason the loss of uniformity that comes with making predication

extensional isn’t a terrible mark against Gupta’s strategy is that being commit-

ted to preserving the thought about possibly non-existent cats still necessarily

being cats already seems to belie a commitment to thinking that predication

should primarily be extensional. This is in part because if one keeps predica-

tion intensional there is a very simple, straightforward definition of necessity

on which possibly non-existent cats are not necessarily cats. But perhaps more

deeply (and more obscurely) this is because holding on to the intuition means

modifying an intensional property, necessity, in light of an extensional fact,

existence. On the commitments we have been trying to preserve with the for-

malizations of the Rough Definition, a thing can belong necessarily to a property

despite failing to belong to it in cases where it has a certain extensional property

(non-existence). This means modifying the account of necessity, making it less

33There are, however, serious issues with the semantics of quantification and necessity for
this strategy. Specifically, as Gupta notes (Gupta, 1980, p.72-75), although intuitively the
assignments of variables that are not free in a formula should be ignored when figuring out
their semantic value, implementing this is difficult, and for both L2 and L3, the schema
‘A→ (∀K,x)A’ is invalid.
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straightforward, in order to make an exception in cases where the thing in ques-

tion has the extensional property of non-existence. Thus, by holding on to the

intuitions behind the Rough Definition, Gupta is already privileging extensional

properties over intensional ones. Accordingly, it makes sense to have extensional

predication be prior to intensional predication, and to make variables range over

individuals rather than individual concepts.

We have seen two potential motivations for Gupta’s choosing to sacrifice

the uniformity of MLν aside from his main motivation of capturing the spe-

cial syntactic and semantic character of common nouns. First, he thinks in

most contexts predication is primarily extensional and should be modeled that

way.34 Second, giving up the uniformity of intensional predication allows him

to preserve the thought that non-existent cats are not cats and that possibly

non-existent cats can still necessarily be cats. This feature of Gupta’s languages

goes unmentioned in (Bressan, 1993). In instances where one would like to pre-

serve both of these thoughts or would like an extensional language, despite its

unwieldiness, Gupta’s languages will be preferable to MLν .

8 The latter route: essential properties in MLν

We might wonder, however, whether it is really so important to say that possibly

non-existent cats are necessarily cats. There is, after all, a stricter sense of

necessity on which if merely possible cats are not cats, then possibly non-existent

cats are not necessarily cats. If, while holding on to this notion of necessity

(which is just the one on page 15), we have another notion that applies to

predicates which hold necessarily of the existing objects falling under them,

then we will still be able to give an account of what is special about predicates

like ‘is a cat’.

What is distinctive of ‘x is a cat’ (Cx) in Figure 2 is that it is a quasi-absolute

concept. In particular, it is not modally constant, but merely quasi-modally

constant (see the definition on p. 12). Looking back at Figure 3 on page 16,

which made ‘x is a cat’ a necessary property, but also counted merely possible

cats as cats, we can see that this table’s version of ‘x is a cat’ (C ′x), on the

34Gupta comments on this (Gupta, 1980, p. 77-78).
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contrary, will be both modally constant (see p. 10) and quasi-modally constant.

This difference can be captured using the following notion:

Definition 10 (Modally Constant, Quasi-Absolute Concept).

QAbsMC =df MConst ∩QMS

C ′x, but not Cx, will be a modally constant, quasi-absolute concept. Although

all QAbsMC are quasi-absolute, because not all quasi-modally constant concepts

are modally constant, QAbsMC is more restrictive than QAbs. This further

restriction means that in contrast to QAbs, QAbsMC is not case relative. That

is, if F ∈ QAbsMC in some case, then F ∈ QAbsMC in all cases.35

The final notion that will be useful to us is:

Definition 11 (Modally Constant Expansion).

F ′ is the modally constant expansion of F iff

∀x [♦F (x)→ �F ′(x)]

If Figure 2 is for C(x), ‘x is a cat’, then Figure 3 is for the modally constant

expansion of ‘x is a cat’, C ′(x). Since all objects falling under a quasi-absolute

concept fall under it in all of the cases in which they exist, quasi-absolute con-

cepts will be true of exactly the same existing objects as their modally constant

expansions, but may differ from them in that non-existent objects falling under

the expansions may not fall under the original quasi-absolute concepts.

Following (Bressan, 1993, p. 372) we can define a substance as something

that falls under a necessarily quasi-absolute concept (a concept that is quasi-

absolute in every case) and a substance sort as such a necessarily quasi-absolute

concept. This is, remember, his paraphrase of Gupta’s substance sort, intro-

duced above on page 14. Then, although a substance won’t necessarily fall

under its substance sort because the sort could not include it in a case in which

it didn’t exist, it will necessarily fall under the modally constant expansion of

that sort.

35This means the problem with QAbs that Gupta points to in his footnote (which was
discussed on page 13 above) is not one for QAbsMC (Gupta, 1980, p. 70).
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Now, with all of these notions in place, we might think of substance sorts

as indicating essential properties of those things that fall under them. For,

something that falls under them falls under them in all cases in which it exists

(i.e. they are quasi-modally constant).36

This conception of an essential property, however, has a few features that

may be undesirable. For one, although all necessary properties will be essential

properties, essential properties will not generally be necessary. This makes

essentiality a weaker notion than necessity, although it is usually thought of

as stronger. Further, this conception of an essential property is intensional,

having to do with extensions in various cases, not hyperintensional, which would

distinguish essential properties from non-essential properties that are had in all

cases.37 As a result, it cannot be used to model the distinction between essential

properties and non-essential properties that something has in every case in which

it exists.38 Of course, this is what we should expect from an intensional system

such as MLν .

9 Conclusion

We have attempted to develop Bressan’s MLν so that it can accommodate

both an affirmative and a negative answer to the question of whether possi-

bly non-existent things should count as necessarily the sort of thing they are.

If one wants to give an affirmative answer and preserve the thought that possi-

bly non-existent substances are still necessarily (rather than merely essentially)

substances of the sort they are, as Gupta does, then his languages will be prefer-

able to MLν . Still, as is clear in Gupta’s own discussion (which I alluded to

in footnote 33 and look at in the appendix) there are significant (and it seems

quite deep) unresolved issues for this implementation. Because of these, we

might wonder whether holding onto whatever original motivation we had to

36Belnap and Müller hit upon the same conception of an essential property in developing
CIFOL (Belnap and Müller, 2014b, § 5.3). They do a nice job of showing how absolute concepts
will not be the only essential properties. Properties like the sex of horse, which we commonly
take to be essential to it qua horse, will also come out as essential in this sense.

37Here I am adapting Gupta’s distinction between the extension, intension, and hyperin-
tension of an expression (Gupta, 1980, p. 17), which he borrows from (Cresswell, 1975).

38Fine is after this distinction with his example of Socrates and his singleton (Fine, 1995,
p. 241).
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implement this answer to our question is worth it. This is especially so consid-

ering that in our development of MLν we have both preserved the uniformity of

Bressan’s original formulation and counted ‘x is a cat’ as a substance sort that

designates an essential property, although it does not necessarily apply to cats,

because they are born and die.
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Appendix: Gupta’s languages

In this appendix I will give some of the technical details concerning two as-

pects of Gupta’s Languages. First, I will present Gupta’s various versions of

the notions of a substance sort, constancy, and separation, which correspond to

Bressan’s absolute concepts, modal constancy, and modal seperation. Second, I

will give some of the details of Gupta’s treatment of the semantics of quantifi-

cation and necessity. When he introduces non-existent objects, Gupta struggles

mightily to adapt the semantics of necessity so that possibly non-existent cats

can still be necessarily cats, but as I mentioned in the conclusion, he does not

ultimately arrive at a satisfying formulation. (Gupta recognizes this, to a de-

gree (Gupta, 1980, p. 75).) I will try to give some sense of why, without going

through the full story (Gupta, 1980, ch. 3). All page numbers included with the

definitions are to the corresponding definitions in (Gupta, 1980).

Before doing either of these, some preliminaries are in order. In addition

to the standard logical categories, Gupta’s L1 includes a category for common

nouns. Although the syntactic rules of L1 are fairly straightforward and I will

not rehearse all of them, quantification is always restricted to quantification

over a certain sort of thing by a common noun, so the syntactic rules governing

these are worth presenting:

Definition 12 (Some of Gupta’s syntax; cf. p. 7).

(i) If K is a common noun, x is a variable, and A is a formula, then (∀K,x)A

is a formula.

(ii) If K is a common noun, x is a variable, and A is a formula, then (K,x)A

is a common noun.

The second clause allows for complex common nouns built from simpler ones,

such as ‘Man who likes Margret.’39

The semantics of Gupta’s languages begins standardly enough with

Definition 13 (Model Structure for L1; p. 18). A model structure for L1 is an

ordered triple 〈W,D, i∗〉, where:

39For more details and discussion see (Gupta, 1980, ch. 1, §1-2).
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(i) W is a nonempty set,

(ii) D is a function that assigns to each member of W a nonempty set,

(iii) i∗ is a function that assigns to each member w of W a member of D(w).

Think of W as the set of possible worlds (or cases), D(w) as the set of objects

that exist in w, and i∗ as the individual concept whose extension in all worlds

is the non-existent object (i.e. i(w) = ∗ in all w).

As with Bressan’s absolute concepts, Gupta models substance sorts through

an intensional property that is constant and separated:

Definition 14 (Gupta’s Substance Sort in L1; p. 35). A substance sort in a

model structure A is a modally constant and separated intensional property.

Modal constancy in L1 is not substantively different from Bressan’s, although

Gupta states it slightly differently. Where A is a model structure:

Definition 15 (Gupta’s Modal Constancy; p. 27). An intensional property S

in A is modally constant iff S (w) = S (w′) at all worlds w,w′ ∈W .

That is, S will be constant if the individual concepts in the extension of S for

any world are the same.

I mentioned in footnote 18 that Gupta adjusts Bressan’s notion of modal sep-

aration because it is case relative, and so it will not do for modeling a principle

of trans-case identity. Gupta’s preferred modification is his own ‘separation:’

Definition 16 (Gupta’s Seperation; p. 29). An intensional property S in A is

separated iff all individual concepts i, i′ that belong to S at any worlds w,w′

are such that if i(w1) = i′(w1) at a world w1, then i = i′.

He uses this to define his notion of a sort:

Definition 17 (Gupta’s Sort in L1; p. 33). A sort in a model structure A is an

intensional property in A which is separated.

In general Gupta uses variables ‘S ’, ‘S ′’, ‘S1,’ etc. to range over sorts in a

fixed model structure A.

In addition to Gupta’s separation, there is also a weaker notion that is like

Bressan’s world relative separation, except that it holds at every case.
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Definition 18 (Gupta’s World Relative Seperation; p. 29n). An intensional

property S in A is separated in the world w iff all individual concepts i, i′ that

belong to S at w are such that if i(w1) = i′(w1) at a world w1, then i = i′.

Definition 19 (Gupta’s Weak Seperation; p. 29n). An intensional property S

in A is weakly separated iff S is separated in every world.

Intuitively, the difference is that while separation says that the extension of two

individual concepts that are S in any world (even if these worlds are different)

will never overlap at a world, weak separation just says that at each world the

individual concepts that are S in that world will not have the same extension

in any world. Weak separation can provide a principle of identity, and Gupta

develops a closely related notion that also incorporates a treatment of non-

existence in L5 of chapter 4.

In order to accommodate non-existence, in chapter 3 Gupta modifies L1

in three different ways, treating the semantics of quantification and necessity

slightly differently in each of L2, L3, and L4. Still, the way that he treats modal

constancy and separation in each of these is the same:

Definition 20 (Gupta’s Near Constancy; p. 69-70). An intensional property S

is nearly constant in A iff, if an individual concept i belongs to S at any world

w, then i belongs to S at all worlds w′ such that i(w′) 6= i∗(w′).

Definition 21 (Gupta’s Near Seperation; p. 69). An intensional property S is

nearly separated in A iff all individual concepts i, i′ that belong to S at some

worlds (i.e., i ∈ S (w1) and i′ ∈ S (w2), for some w1, w2 ∈ W ) are such that if

i(w) = i′(w) 6= i∗(w) at a world w, then i = i′.

As I just noted here and in footnote 18, Gupta is concerned with distinguishing

two forms of principles of identity associated with common nouns, sorts and

substance sorts, where only the latter apply to essential properties.

Definition 22 (Gupta’s Sort in L2-L4; p. 69). S is a sort in a model structure

A iff S is an intensional property and S is nearly separated in A.

Definition 23 (Gupta’s Substance Sort in L2-L4; p. 70). S is a substance sort

in A iff S is a sort in A and S is nearly constant in A.
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As with Gupta’s separation and Bressan’s modal separation, Gupta’s near sep-

aration differs from Bressan’s quasi-modal separation in that it is not case rel-

ative and so can serve as a principle of trans-case identity. In chapter 4, Gupta

modifies separation and constancy again, this time endorsing for his ‘quasi-

separation’ something like Bressan’s ‘quasi-modal separation’ but in every case.

For the details, as well as the corresponding required adjustment of constancy

for L5, see (Gupta, 1980, p. 104, & p. 107).

There are a few background notions that we need to have in place before we

can look at Gupta’s treatment of the semantics for quantification and necessity.

First, he defines two sets of brackets. Given a sort S in A, he designates by

S [w] the set of objects that fall under S in w, and by S JwK the set of objects

that are possibly S .

Definition 24 (p. 35).

S [w] =df {d : d ∈ D(w) and there is an individual concept

i ∈ S (w) such that i(w) = d.}

Definition 25 (p. 36).

S JwK =df {d : d ∈ D(w) and there is an individual concept

i ∈ S (w′) for some w′ ∈W such that i(w) = d}.

Next he defines what it means to be ‘the same S ’ and ‘an S counterpart:’

Definition 26 (‘the same S ’ in L1; p. 36). d in w is the same S as d′ in w′ iff

there is an individual concept, i, that belongs to S at some world, and i(w) = d

and i(w′) = d′.

Definition 27 (‘an S counterpart’; p. 36). The S counterpart in w′ of the

individual d in w (abbreviated S (w′, d, w)) is the unique individual d′ such

that d′ in w′ is the same S as d in w.

As Gupta points out, “S (w′, d, w) is well defined if d ∈ S JwK. For if d ∈ S JwK,

then there is an individual concept i belonging to S at some world such that

i(w) = d. The separation of S implies that i is unique. Hence there is a unique

d′, namely i(w′), which is the same S as d in w” (Gupta, 1980, p. 36).
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Now to define the assignment function, we first need the notion of a model:

Definition 28 (Model for L1; p. 37). A model for L1 is an ordered quintuple

〈W,D, i∗,m, ρ〉, where:

(i) 〈W,D, i∗〉 is a model structure,

(ii) m is a function that assigns (a) to each individual constant of L1 an

individual concept, (b) to each n-ary predicate an n-ary relation, and (c)

to each atomic common noun a sort,

(iii) ρ ∈W .

Through the function m a model in L1 assigns an intension to each atomic

expression and ρ specifies the real world.

With the notion of a model, an assignment is:

Definition 29 (Assignments for L1; p. 38). An assignment for L1 relative to

a model M = 〈W,D, i∗,m, ρ〉 is a function that assigns to each variable of L1

an ordered pair 〈S , d〉, where S is a sort relative to the model structure and

d ∈ U(= ∪w∈WD(w)).

Here if a is an assignment, ao(x) is the object assigned to x by a and as(x) is

the sort assigned to x by a. Using this Gupta defines a few notions that he then

deploys in defining the semantic value of formulas involving quantification and

necessity:

Definition 30 (Normal assignments for L1; p. 38). An assignment a (for L1

relative to a model M) is normal in w iff ao(x) ∈ as(x)JwK for all variables x.

Definition 31 (S variants for L1; p. 38-39). An assignment a′ is an S variant

of a at x in w iff

(i) a′ is just like a except perhaps at x (abbreviated to a′
x
l a),

(ii) a′s(x) = S ,

(iii) a′o(x) ∈ S [w].
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Definition 32 (World variants for L1; p. 39). The w′ variant of a relative to w

(abbreviated to f(w′, a, w)) is the unique assignment a′ that meets the following

conditions:

(i) a′s(x) = as(x) at all variables x,

(ii) a′o(x) in w′ is the same a′s(x) as ao(x) in w, at all variables x.

If these conditions are not met by any assignment then f(w′, a, w) is undefined.

Now, having defined M , w, and a, Gupta then defines through induction on

the length of expression α the concept: “the semantic value of α at a world w in

a model M relative to the assignment a normal in w” (Gupta, 1980, p. 40). He

abbreviates this to V wM,a(α). Before giving this definition, however, it will help

with quantification to have defined one more function that gives the intension

of an expression α in a model M , for an assignment a, and a world w:

Definition 33 (Intension function for L1; p. 40). Let M,w, a, and α be as

above. Then IwM,a(α) is a function with domain W that satisfies the following

condition:

(IwM,a(α))(w′) = V w
′

M,f(w′,a,w)(α)

Gupta uses m to define the valuation function V as expected for individual

constants, variables, and common nouns, and the value of an equality or truth

function are found in the standard ways (Gupta, 1980, cf. p. 40-41). I include

the definition of V for n-ary relations to give a better sense of how things run:

Definition 34 (Part of V w
′

M,a(α); p. 40-41). Let M,w, a, and α be as above.

Then V is defined by induction on α:

(i) If α is the atomic formula F (t1, . . . , tn), then V wM,a(α) = T

if 〈V wM,a(t1),. . . , V wM,a(tn)〉 ∈ m(F )(w). Otherwise V wM,a(α) = F .

(ii) If α is the formula �A, then V wM,a(α) = T

if V w
′

M,f(w′,a,w)(A) = T at all worlds w′ ∈W . Otherwise V wM,a(α) = F .

(iii) If α is the formula (∀K,x)A, then V wM,a(α) = T

if V wM,a′(A) = T for all assignments a′ that are IwM,a(K) variants of a at x

in w. Otherwise V wM,a(α) = F .
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(iv) If α is the common noun (K,x)A, then V wM,a(α) is the set of individual

concepts i such that i ∈ V wM,a(K) and V wM,a′(A) = T , where a′
x
l a and

a′s(x) = IwM,a(K) and ao(x) = i(w).

Working back through the definitions, with this semantics one can see how

assignment functions contribute to fixing principles of trans world identity in

the way described in section 7.2.

In accommodating non-existent objects Gupta takes over many of these def-

initions, only modifying them when necessary. The main difficulty comes with

the semantics of necessity and how it interacts with quantification. To give the

modifications of these he first revises the notions of being ‘the same S :’

Definition 35 (‘the same S ’ with non-existents; p. 71). d in w is the same S

as d′ in w′ iff d 6= i∗(w) and d′ 6= i∗(w′) and there is an individual concept, i,

which belongs to S at some world, and i(w) = d and i(w′) = d′.

Deploying this new version of ‘the same S ’ then has the effect of changing

the sense of ‘an S counterpart’ (abbreviated S (w′, d, w)), and a ‘world vari-

ant’ (abbreviated f(w′, a, w)), although the wording of the definitions of these

notions can stay the same.

Now the intuition that Gupta tries to capture with the semantics of necessity

is “an object d of the sort S satisfies �Fx in w iff d satisfies Fx in w, and

at all worlds w′ at which S (w′, d, w) is defined, S (w′, d, w) satisfies Fx in w′”

(Gupta, 1980, p. 71). He does this with the following in L2, which replaces

Definition 34.(ii):

Definition 36 (Box rule for L2; p. 72). Let M,w, a, and α be as above:

(i) If α is the formula �A, then V wM,a(α) = T

if V w
′

M,f(w′,a,w)(A) = T at all worlds w′ at which f(w′, a, w) is defined.

Otherwise V wM,a(α) = F .

This definition runs into serious trouble, one aspect of which I eluded to in

footnote 33, because f(w′, a, w) is undefined at a world w′ now whenever there

is no S variant at a w′ for one of the variables that gets assigned an object

by a. This will be true, even if the variable in question does not figure in the
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formula under consideration. As a result, the semantic values of the formula at

worlds which should be considered end up being discounted. And even though

Gupta makes progress on this issue in the semantics of L3, there are still serious

issues (Gupta, 1980, cf. p. 72-75).

To respond to these, in L4 Gupta gives up on the assignment of sorts and

objects to variables and instead just assigns them individual concepts. With

necessity, he now takes into account all of the worlds.

Definition 37 (Box rule for L4; p. 76). Let M,w, a, and α be as above:

(i) If α is the formula �A, then V wM,a(α) = T

if V w
′

M,a(A) = T at all worlds w′ ∈W . Otherwise V wM,a(α) = F .

Now that he is not doing anything to discount those cases where the objects

figuring in A in various worlds have * as their extension in that world, only the

cats of Figure 3 on p. 15 will count as necessarily cats, not the ones in Figure 2.

That is, since C(eh∗) = F in γ3, eh∗ will not necessarily be a cat, even though

it is one in all of the cases in which it exists. In this way, with L4 Gupta gives

up on accommodating our ‘rough definition’ of necessity (Definition 9).
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